

Recent progress and the future directions of the Canadian weather and environmental prediction systems: optimizing research to operations mechanisms

Michel Jean

Director General Weather and Environmental Operations Meteorological Service of Canada

First Virtual US-Canada Border Conference 25-26 September 2013

Outline

- A bit of context....
- Where we are.
- Where we are heading
- Optimizing research to operations
- Human and technological dimensions

Acknowledgements

- Gilbert Brunet, Director Meteorological Research division
- André Méthot, Director National Prediction Development
- Richard Hogue, Director National Prediction Operations
- Bertrand Denis, on assignment NWP and HPC systems
- Jennifer Milton, Executive Director WEO
- John Parker, Manager Operations, Atlantic Region
- Dave Jackson, Director Canadian Ice Service
- And many others....

A bit of context....

NWP... more than « what's the weather going to be tomorrow? »

Dealing with increasing vulnerabilities

The Future for the Meteorological Service of Canada

- Our Vision: Enable Canadians and policy-makers to take appropriate actions to enhance their benefits and reduce their risks to significant changes in weather, climate, water and air quality.
- Implement a strategic vision for our weather and environmental services that responds to emerging environmental, societal and political landscapes and realities by:
 - Strengthening our operational, predictive and alerting capacity;
 - Providing Canadians with end-to-end seamless weather and climate services at all time scales to support decision-making in adapting to variable weather and climate conditions;
 - Enhancing our services to meet the emerging demands for weather and environmental information in Canada's vast Northern Territory, in support of safety and security.

How do we do reach that goal?

By enabling a multi-hazard multi-scale weather and environmental alerting platforms from nowcasting to climatological timescales that takes into consideration the complete cycle relating weather to impacts and the underlying infrastructures (social, physical and environmental)

An unified numerical forecasting system for seamless (e.g. multi-scale and multi-disciplinary) applications

Our Limitations

- However, countries are subject to fiscal constraints which pose a number of challenges, including the lack of funding to address core program integrity requirements in the near-term;
- This means that our collective way forward will need to be:
 - Focussed by addressing priority infrastructure initiatives that are the most critical to the integrity of the weather, water and environmental enterprise;
 - Innovative by rethinking the use of our current resources and how we share knowledge and capabilities;
 - Strategic by making choices with respect to when, where and with whom we engage

Where we are...

Main Centres of the Meteorological Service of Canada

Canadian Meteorological Centre

Meteorological Research

Division: Data

Assimilation, Modeling,

Cloud Physics

CMC Development

Division: Data

Assimilation,

Numerical Weathern

Prediction, Weather

Elements, Scientific

Applications

IT Infrastructure (CIOB): Supercomputer, National Telecommunications, Network, User support

CMC Operations: Analysis & Prognosis, Env. Emergency Response, Air Quality, Implementation and Operational Service

Page 13 – 30 septembre 2013 **IBM p5 4224 PEs**

Canadian Meteorological Centre (CMC): a critical centre of the MSC

- National Meteorological Center (24/7, year round)
 - Canadian equivalent to NCEP
- Emergency response capacity
 - Canadian equivalent to LLNL NARAC
 - WMO Regional Specialized Meteorological Centre for nuclear emergency response.
 - ICAO Volcanic Ash Advisory.
- Critical component of the air navigation system (NavCanada) are located at CMC (forecasts, observations, telecommunications) due to the informatics infrastructure and UPS
- Telecommunication network for Environment Canada (GTS hub)

CMC-MRD unified multi-scale model: GEM GEM= Global Environmental Model

- Global constant resolution (regular lat-lon grid) (GEM-Global)
 - -Medium-range deterministic forecasts (33 km)
 - Seasonal forecasts / Climate simulations (100 -200 km)
 - -Medium-range EPS (100 km)

- Global variable resolution (stretched grid)
 - Short-range deterministic forecasts (GEM-Regional 15 km)
 - Regional climate simulations (55 km)

- Limited-area (LAM) constant resolution lat-lon grid
 - -Short-range high-res. deterministic forecasts (GEM-LAM 2.5/1.0 km)
 - Urban emergency response (250 m)
 - Regional climate simulations (15-55 km)
 - Short-range EPS (33 km)

Canada

RMS Errors for day 2 and day 5 forecasts of GEM (33km) over North America

Environment Canada Page 16 – 30 septembre 2013 120h 500mb forecast

• Weather Analysis:

Global assimilation system
 4DVar;
 Four times daily;
 33 km resolution.

- Regional assimilation system 3DVar;
Four times daily;
15 km resolution

Ensemble assimilation system
Ensemble Kalman Filter;
96 analyses produced 4x daily;
20 members in forecast mode (100 km resolution)

Global grid (not all grid lines shown)

• Weather Analysis:

- Global assimilation system
4DVar;
Four times daily;
33 km resolution.

Regional assimilation system
 3DVar;
 Four times daily;
 15 km resolution

Ensemble assimilation system
Ensemble Kalman Filter;
96 analyses produced 4x daily;
20 members in forecast mode (100 km resolution)

Regional grid (not all grid lines shown)

Weather Analysis:

- Global assimilation system 4DVar; Four times daily; 33 km resolution.

- Regional assimilation system 3DVar; Four times daily; 15 km resolution

Canada

- Ensemble assimilation system Ensemble Kalman Filter: 96 analyses produced 4x daily; 20 members in forecast mode (100 km resolution)

Ensemble system

• Weather Analysis:

 Global assimilation system 4DVar;

Four times daily; 33 km resolution

15 km resolution

Regional assimilation system 3DVar; Four times daily;

Ensemble assimilation system
 Ensemble Kalman Filter;
 Once daily;
 20 members, 100 km resolution

Environment

Canada

Set of surface analysis produced daily:

Snow, Ice, SST, Surface temperature,

- Weather & Seasonal Forecasting:
 - Medium range (7-day) forecast Global 33 km resolution grid
 - 48/54-hour forecast Regional 15 km resolution grid
 - 24-hour forecast
 - 4 Limited-Area 2.5 km resolution grids
 - + 1 km resolution grid over the 2010 winter Olympics
 - Extended-range (16-day) ensemble forecast
 - 20 members 100 km resolution

Canada

- Seasonal (4-month) ensemble forecast 40 members 200-500 km resolution

Global forecast

Weather & Seasonal Forecasting:

- Medium range (7-day) forecast Global 33 km resolution grid
- 48/54-hour forecast Regional 15 km resolution grid
- 24-hour forecast
 - 4 Limited-Area 2.5 km resolution grids
 - + 1 km resolution grid over the 2010 winter Olympics
- Extended-range (16-day) ensemble forecast

20 members 100 km resolution

- Seasonal (4-month) ensemble forecast 40 members 200-500 km resolution

15 km resolution forecast of cloud fraction

Weather & Seasonal Forecasting:

- Medium range (7-day) forecast Global 33 km resolution grid
- 48/54-hour forecast Regional 15 km resolution grid
- 24-hour forecast
 - 4 Limited-Area 2.5 km resolution grids
 - + 1 km resolution grid over the 2010 winter Olympics
- Extended-range (16-day) ensemble forecast
 - 20 members 100 km resolution
- Seasonal (4-month) ensemble forecast 40 members 200-500 km resolution

Four grids with 2.5 km resolution

Weather & Seasonal Forecasting:

- Medium range (7-day) forecast Global 33 km resolution grid
- 48/54-hour forecast Regional 15 km resolution grid
- 24-hour forecast
 - 4 Limited-Area 2.5 km resolution grids
 - + 1 km resolution grid over the 2010 winter Olympics
- Extended-range (16-day) ensemble forecast

20 members 100 km resolution

- Seasonal (4-month) ensemble forecast 40 members 200-500 km resolution

Four grids with 2.5 km resolution

- Weather & Seasonal Forecasting:
 - Medium range (7-day) forecast Global 33 km resolution grid
 - 48/54-hour forecast Regional 15 km resolution grid
 - 24-hour forecast
 - 4 Limited-Area 2.5 km resolution grids
 - + 1 km resolution grid over the 2010 winter Olympics
 - Extended-range (16-day) ensemble forecast
 - 20 members 100 km resolution
 - Seasonal (4-month) ensemble forecast 40 members 200-500 km resolution

Ensemble forecast

North American Ensemble Forecast System (NAEFS):

Joint project involving MSC, NWS and the NMSM

Weather & Seasonal Forecasting:

- Medium range (7-day) forecast Global 33 km resolution grid
- 48/54-hour forecast Regional 15 km resolution grid
- 24-hour forecast
 - 4 Limited-Area 2.5 km resolution grids
 - + 1 km resolution grid over the 2010 winter Olympics
- Extended-range (16-day) ensemble forecast
 - 20 members 100 km resolution
- Seasonal (4-month) ensemble forecast 40 members 200-500 km resolution

Page 27 - 30 septembre 2013

Seasonal Forecast

- Wave Forecasting:

 Spectral Wave Model (WAM)
 48-h regional / 120-global forecasts of wave height and period, swell height and period, and wave and swell directions;

Regions: Pacific, Atlantic and Canadiar Great Lakes (and Arctic for DND)

- Air Quality Forecasting

 GEM-MACH: in-line chemical and weather model recently implemented (No 2009)

Global WAM - Atlantic domain

48-hour forecasts of tropospheric ozone, NO₂, PM2.5 and PM10 for North America

- Wave Forecasting:

 Spectral Wave Model (WAM) 48-hour forecasts of wave height and period, swell height and period, and wave and swell directions:

> 3 Regions: Pacific, Atlantic and Canadian Great Lakes

Air Quality Forecasting

GEM-MACH: in-line chemical and weather model recently implemented (Nov 2009)

GEM-MACH

48-hour forecasts of tropospheric ozone, NO₂, PM2.5 and PM10 for North America

Environmental Emergency applications - dispersion modeling

Nuclear and volcanic ash

Release of hazardous chemicals

Aviation weather in Canada: A unique situation

- a private, not-for-profit company (NAV CANADA) contracts with the MSC for aviation forecast services
- Over the past 15 years, many changes to focus on aviation
 - Consolidated all aviation forecasting into 2 locations (Montréal and Edmonton... roughly 90 forecasters in total)
 - Dedicated aviation forecasters and training
 - Specialized software to assist with workload management, monitoring and alerting, forecast generation
 - Reaching out to end users, getting to know their operations
 - Experimenting with new products
- Synergies with the MSC's public weather program
- The end result is a system that's efficient, much more responsive to aviation needs
- It's well set-up to handle today's needs, but we need to make more changes to handle tomorrow's needs

Where we are heading

Main recent improvements completed or nearing completion

- 200% increase in the data volume assimilated in the deterministic systems (Global & Regional): more IASI, AIRS and SSMIS channels, reduced horizontal thinning for satellite radiances, humidity from aircraft, etc.
- New Global Sea surface temperature analysis
- Global EPS: lid to be raised from 10 to 2 hPa, number of levels from 28 to 40, horizontal resolution from 100km to 66km
- Experimental Regional EPS (North America coverage)
- Coupled atmos-ocean-ice modeling system in the Gulf of St-Lawrence
- Regional LAM continental: resolution to be upgraded from 15km to 10km
- A new one-tier (fully coupled) multi-seasonal forecast system (up to 12 months). It will replace the current two-tier (uncoupled) seasonal forecast system as well as the statistical (CCA) multi-seasonal forecast system.

Aviation weather in Canada: Where we are heading

- The desire to have weather factored more into users' decisionmaking systems
- Need to replace our ageing software... will be using our new forecaster workstation ("NinJo") but it needs to be supplemented by other programs to create and deliver aviation-specific services
- The future portends the use of first-guess fields and forecasts, forecast data in digital form
- Believe in targeted forecaster intervention... still a need for the human in the loop... a pilot in the seat...
- As aviation is international in scope, the need to collaborate and exchange data with others, especially the USA (re NextGen Wx)
- We are developing a comprehensive plan... we are open to ideas

Longer term

- Data assimilation.... 4-D Var, KF or Hybrid ?
- Broadening of applications (agriculture, forestry, health, energy, ecosystem, emergency response)
- Further significant increases of satellite data;
- Further increase in main model resolutions with emphasis in ensemble forecasting approaches (probabilistic forecasts)
- Urban meteorology... towards capabilities to provide guidance at the urban scale (air quality applications, release of hazardous material, etc.)
- Integrated multidisciplinary approach to environmental prediction (coupled atmosphere-ocean-ecosystem, air quality (chemistry);

Evolution of core systems

2011 _____ 2015 _____ 2020

Global

Det. 33 km

EPS *66* km

Det. 20 km

EPS 35 km

Det. 10 km

EPS 20 km

Regional

Det. 10 km

EPS 33 km

Det. 10 km

EPS 15 km

Det. 2.5 km

EPS 10 km

Local

Det. 2.5 km

EPS 2.5 - 4 km

Det. 1.5 km

EPS 2.5 km

Det. 500 m

EPS 1.5 km

Urban

Det. 250-> 5m

Det. 3m

EPS 5m

Det. 1m

EPS 5m

Emerging Integrated Environmental prediction system

Air quality and chemical weather

- Multi-scale approach: global down to human scale
 - Interfacing with effects models for human and ecosystem health
- Refinement of chemical processes to link with health triggers
- Full use of satellite, remote sensing and surface observations to inform integrated modelling system from emission to transport to effect

Feb 3rd, 2006 in Montreal

Emerging Integrated Environmental prediction system

Environmental Prediction System for the Great Lakes – St. Lawrence basin:

Towards an integrated Earth Science System for the Basin

- Operational system which predicts physical parameters of the earth system and ecosystem state variables
 - Nowcast and hindcast mode: interpolation of observations in space
 - Forecast mode: extrapolation in time
- Numerical models which deal with the dynamics and thermodynamics of the system
 - mass, energy and momentum balance
- System designed for decision making purposes
 - Improved weather forecasts
 - Management of international waters and ecosystem protection
 - Water quantity and water quality prediction
 - Currents, Water Temperature, Ice prediction
 - Emergency response
 - Adaptations and Studies
 - atmosphere, land-surface, hydrology, lakes, rivers, ice, waves, habitat
- A Collaborative Project:
 - EC (ASTD, NWRI, MSC), DFO, IJC, Universities

Page 39 - 30 septembre 2013

Canadian Coupled Atmosphere-Ice Ocean Forecast System

Canada requires ocean forecasts and information services for:

- Weather prediction
- Sea ice prediction (e.g. CCG: seal hunt, navigation)
- Fisheries and aquaculture management
- Increased understanding of biological field observations
- Attribution and mitigation of regional climate change impacts
- Risk assessment for extreme events (sea level, waves, currents)
- Search and Rescue, dispersion of pollutants

Fully Coupled system VS Operational GEM

(48 hours forecast)

Environnement Canada

Environment Canada

The Canadian Land Data Assimilation System (CaLDAS)

ATMOSPHERIC FORCING

T, hu, winds
Precipitation
Radiation

- Met analyses and forecasts
- Precip analyses
- Adaptation (downscaling)

ANCILLARY DATA

(databases for soil texture, vegetation, water/land mask, orography, cities)

EXTERNAL LAND SURFACE MODEL

OBS or ANCILLARY DATA?

- Albedo
- Emissivity
- Vegetation (fraction,)
- · height, LAI,
- root depth, ...)

- Soil moisture (screen-level, Lband – SMOS+SMAP)
- <u>Snow coverage fraction</u> (surface, MODIS, IMS)
- **Snow depth** (surface, AMSR-E)
- <u>Surface temperature</u> (screenlevel, IR)

Environment Canada Environnement Canada Canada

Chemical, Biological, Radiological-Nuclear, and Explosives Research and

Key elements for the future roadmap...

Efficient Technology Transfer process:

Optimizing Research to Operations...

The Innovation Chain: a Technology/Service driven process

Numerical Prediction Innovation Committee Chair: DG Meteorology, Co-chair: DG S&T

- Members are all DGs and directors (including Services) responsible for the chain of innovation
- R&D section chiefs are invited to present their activities on a continuous basis
- ToR:
 - Implementation management of R&D innovations
 - Long term planning of future implementations, including resources allocations and re-allocations
 - Dissemination of short and long term plans
- → Implementing the NWP innovations into the operational context:

Comité des Passes Opérationnelles et Parallèles (CPOP) (Operational and Parallel runs Comittee)

Key elements for the future roadmap...

Implementing key « Signature projects »

Charting a course for the future of weather forecasting within the MSC

Identifying Key strategies that integrates the vision and mandate of MSC (signature projects):

- Monitoring Strategy implementing network of networks approach
- High Performance Computing Strategy
- Enabling Environment Canada's science plan (integrated monitoring and prediction)
- Next Generation Weather Forecasting System
- Water and water cycle prediction system
- Modernized Weather Warning and Service Delivery System
- Climate Services Strategy
- Air Quality and health
- METAREAS

Integrating specific programs and tools dealing with the detection, evaluation and information of weather related risks and impacts

National Lab Research Themes/Roles

Atlantic Lab for Marine and Coastal Meteorology

 Role: Improved scientific understanding and prediction of high-impact meteorology in marine and coastal environments.

Québec Lab for Severe Weather Meteorology

 Role: Improved prediction of severe weather processes with numerical weather prediction models.

Ontario Lab for Nowcasting and Remote Sensing Meteorology

 Role: Improve detection and prediction of severe weather processes in all seasons at time scales from 0 to approximately 12 hours.

Prairie and Northern Lab for Hydrometeorology and Arctic Meteorology

- Role 1: Improved detection and prediction of Arctic high-impact meteorology.
- Role 2: Improved prediction of hydrometeorological processes.

Pacific and Yukon Lab for Coastal and Mountain Meteorology

 Role: Improved detection and prediction of high-impact meteorology in complex terrain and urban environments.

National Lab for Aviation Meteorology (Virtual laboratory)

 Role. To undertake R&D in aviation meteorology with the goal of providing more accurate, more relevant and timelier forecasts in order increase the safety and efficiency of aviation operations.

Key elements for the future roadmap...

Role of the operational forecaster

Vision to Role of the forecaster...

- Forecast system needs to change to achieve the Vision:
 - Monitoring
 - Prediction
 - Science
 - Services
- Defining, refining and realizing the forecasters role in the system is essential to achieve the Vision. The role must:
 - Facilitate the best application of human's skills;
 - Make the best use of technological progress;
 - Enable adaptability and responsiveness to client requirements;
 - Support effective decision making by enabling the forecast of impacts.

Thrusts for the Role of the Forecaster

- Forecast production
 - moving to oversight and intervention in a decision making system.
- Client oriented
 - moving to the seamless integration of client relationships within the full forecast system.
- Science and Development
 - moving to the seamless application of science results to meet client requirements...
 - But science should not be subdued by the Service functions
- Learning
 - moving to forecasters with appropriate skills in a system of continuous skill renewal
- Organization
 - moving to an adaptively managed system to minimize societal risks to high impact weather.

Charting a course toward the future

- An efficient technology transfer process
- Implementing key « signature » projects
- A vision for the role of the forecaster in this road towards the future

Summary... a Canadian perspective

- Canadians demanding more and better integrated environmental information to support decision-making:
 - Mitigate increasing vulnerability of society, economy and infrastructure in face of increasing severity & occurrence of high impact events such as severe weather and pollution episodes
 - Know the risks and adapt to a changing climate (extreme weather, development of the North, etc...)
 - Maximize efficiency of economy and operations
 - Reduce emissions and avoid health risks of pollution exposure
 - Support sustainable use and development of natural resource
- Integrated multidisciplinary approach to environmental prediction
 - coupled atmosphere-ocean-ecosystem (whole-earth simulation), air quality (chemistry)
- Broadening of applications
 - emergency response, ecosystem, agriculture, forestry, health, energy

Summary... supporting a broad and global perspective

- Global community of NMHS hold a key role in providing the vision, expertise, products and services related to multi-hazards environmental alerting platforms
- The international framework must include key partnerships and provide a reliable and sustainable infrastructure on which the vision of disaster risk reduction activities will ensure that its purpose is met.
- Improvements in understanding weather, water and environmental processes, such as in the oceans and polar areas will improve global environmental modeling
- Development and sharing of expertise, knowledge and practices will enable scientific and technical education and training, provide a sound basis for current and future generations in dealing with environemental hazards.

Vision to Role

- Forecast system needs to change to achieve the Vision:
 - Monitoring
 - Prediction
 - Science
 - Services
- Defining, refining and realizing the forecasters role in the system is essential to achieve the Vision. The role must:
 - Facilitate the best application of human's skills;
 - Make the best use of technological progress;
 - Enable adaptability and responsiveness to client requirements;
 - Support effective decision making by enabling the forecast of impacts.

Thank you!